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CLASSIFICATION OF LINEAR INTEGRALS OF A HOLONOMIC 

~C~~C~ SYS~~ WITH TWO DEQ~~S OF F~EDO~ 

Let h# = c be the linear integral of a mechanical system with two degrees of 
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The linear integrals of a mechanical system are classified according to the solu- 
tions of the Killing equation and of the form of the generalized forces. An exam- 
ple of a mechanical system with two degrees of freedom which has a generalized 

force function but no linear integral, was given in [I]. 

freedom. This requires that [1] 

v&x f V,h, = 0 (1) 

3L,QX = 0 (2) 

Considering 

as a linear element of the two-dimensional ~ema~ian space V, we find, that the fol- 
lowing possibilities f2. 31 may be given to the Killing equation (1). Equations (1) have: 

a) no solution, 
b) one solution, or 

c) three solutions. 
In the case (a) Eq. (1) has no solution, hence the mechanical system has no linear 

integral. In the cases (b) and (c), using integrable transformations the linear element 

can be reduced to the form 

2T dt= = cl9 = v (q’) wql)” + wf)“l (3) 

then it is said that the rotation metric is given @I. It has been shown that each rotation 
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metric defines a surface of revolution. 
In the case (b), h, = 0, $ = F’ 

is a unique solution of (1) defining a vector parallel to the surface. Condition (1) implies 
that Q” = 0, i.e. that the generalized force acts along the meridian, is the necessary 
condition for a linear system to have a linear integral. When this condition holds, the 
system has a single linear integral, otherwise it has no such integral. 

In the case (c) the Riemannian space has a constant Gaussian curvature 2rf, and Eqs. 
(1) have three independent solutions. A method for obtaining these solutions for Vs 
with a metric of the form (3) was given in p]. Let us denote these solutions by h,*;i = 

= 1,2,3,where x r= 1, 2. Any solution ?L~ can be written as a linear combination 

of Lit namely 
h, = h,lT, -j- h,=Tz + Iv,~T,, T1, T,,..?‘, = const 

When Ql = Q” = 0, the mechanical system has three independent linear integrals 

h,‘q’X z cl, ?L,2q”” = $, &,“q’x = CR 

If at least one ,Q” is not zero, then 

0' = - P (TX + T,h2 + TJz3), Q” = p @‘A” + Tzh12 + T,h13) (4) 

is the necessary condition for the mechanical system to have a linear integral, and in 

this case it has a single linear integral. Suppose that another independent solution u, 
of (1)exists satisfying (4). This solution will have to be collinear with h,. But this was 
shown in [l] to be impossible. When condition (4) does not hold, the mechanical system 
has no linear integral. 

Let us consider the case (b) in more detail. The following theorem shows what form 
the force function U must have for the mechanical system to have a linear integral. 

Theorem. The necessary and sufficient condition for a mechanical system in 
the case (b) to have a linear integral, is, that the force function u is a function of the 

Gaussian curvature K, i.e. it is iJ (Kj. 
Proof. We know that [I] 

(V&&s + V~~~~~~ 3Lj = 2(R~~~~j~ + Rissole) (51 

When the system has two degrees of freedom and k = 1, s = 2, we have 

&s&s + R:sserl = V&i + R&s) arz = @se,, (R,,,, + R,,l,) = o 

The relation (5) therefore becomes 

~V~Rs~~ + VsR& A’ = 0 (6) 

Taking into account the fact that RiiAl = K (gikgIj - g,lgj,), we find that [4] 

GsRijkl = vsK CgikBlj - g,lgjtJ 

which on substitution into (6) yields 

&s&l - &?Jgiz) vale’ + (9ds - &zg,,) V&h’ = 0 (7) 

Since in the case (b) the curvature K is not constant, it follows that at least one V, K 
is not zero. Transforming (7) we obtain 

V,KX’ + V,Kh2 = V,KAL” = 0 



Classificarion of linear integrals of a holonomic mechanical system 383 

Consequently 
hj = ejs V‘K 

where efs is a bivector p]. Using the condition (2) and the relation Qj = au / a$, 
we find ei’V KWJ = 0 

which shows that U and K depend on eich ither, i. e. U = u (K). 
Conversely, let us assume that U = U (K).Then for the generalized forces we find 

Qj = (dU / dK) VjK 

Since the condition (8) holds, we must find whether the condition (2) also holds. Indeed, 

hiQj = @V,K SVjK = 0 

which proves the theorem. 
Corollary. Let. under the conditions of the Theorem, gAp depend only on one of th 

the variables, say ghP (ql). Then 143 

K= 
Rl%l% 

gngm - g1P 
(9) 

Both, the numerator and the denominater depend only on q’. Consequently K = K (q’) 
According to the theorem TJ = 7J (ql). Thus if gap ($), the condition that U (q’) 
is necessary and sufficient tor the mekhanical system to have a linear integral. 

Consider the example analyzed in [l] 

2T = AT’” + BtP + 2Ccos (0 - cp) (~‘6 

A = ‘V,m? 9 B = Q/3m?, C = mr2 

U = Smgr cos cp + mgr cos 8 

Changing the variables according to the rule q1 = 8 - cp and q2 = cp we obtain 

2T* = A (q2’>’ -+ B (q2’ + q”)” + 2ccos ql (ql’ + q”*) q2* 

U*= 3mgr cos q1 $- mgr cos (ql + q2) 
We see that gA, (ql). The force function U de ds on 42, since 

au i a$ = - mgr sin q’ + q2) # 0. p” 
From the corollary it follows that the system has no linear integral, as was shown 

directly in [l]. 
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